Ahmed T, Nisler CR, Fluck EC 3rd, Walujkar S, Sotomayor M, Moiseenkova-Bell VY. Structure. 2022 Jan 6;30(1):139-155.e5. doi: 10.1016/j.str.2021.08.003. Epub 2021 Aug 27.

Summary

Transient receptor potential

Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca2+-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca2+, and the molecular evolution of TRP channels.

Keywords

transient receptor potential (TRP) channel; cryo electron microscopy (cryo-EM); molecular dynamics simulation; ion channel; calcium; membrane protein

 

Research